Please wait a minute...
浙江大学学报(工学版)
能源与机械工程     
日本空间液氦温区低温技术的发展现状
甘智华1,2, 陶轩1,2, 刘东立1,2, 孙潇1,2, 闫春杰3
1. 浙江大学 制冷与低温研究所,浙江 杭州 310027;2. 浙江大学 浙江省制冷与低温技术重点实验室,浙江 杭州 310027;3. 兰州物理研究所 真空低温技术与物理国家级重点实验室,甘肃 兰州 730000
Development status of space cryogenic technology at liquid helium temperature in Japan
GAN Zhi hua1,2, TAO Xuan1,2, LIU Dong li1,2, SUN Xiao1,2, YAN Chun jie3
1. Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, China; 2. Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province, Zhejiang University, Hangzhou 310027, China; 3. State Key Laboratory of Vacuum Cryogenic Technology and Physics, Institute of Lanzhou Physics, Lanzhou 730000, China
 全文: PDF(5826 KB)   HTML
摘要:
介绍日本空间探测器中液氦温区低温技术的发展历程,大致可以分成3个阶段:超流氦杜瓦(湿法)、斯特林制冷机冷却超流氦杜瓦(半干半湿
法)以及斯特林制冷机预冷J T(Joule Thomson)制冷机(干法).通过不断改进,制冷机的性能和可靠性稳步提高.日本依托一系列空间项目,用早期
项目的经验为后续计划确定方向,在解决问题的过程中进步,可以为我国开发相关技术提供参考.
Abstract:
The development history of cryogenic system at liquid helium temperature utilized in Japan space detector was introduced. There are three stages: superfluid helium dewar (wet system), superfluid helium dewar cooled by Stirling cooler (system of both dry and wet), Joule Thomson cooler cooled by Stirling cooler (dry system). The performance and reliability of coolers steadily improves with continually improvement. Japan depends on a series of space missions, orients the direction of following projects using the early experiences, and makes progresses when solving problems, which is instructive for our country when developing related technology.
出版日期: 2015-10-29
:  TK 1  
基金资助:
国家自然科学基金资助项目(51176165);高等学校博士学科点专项科研基金资助项目(20130101110098);真空低温技术与物理国家
级重点实验室开放基金资助项目.
通讯作者: 闫春杰,男,研究员. ORCID:0000 0002 6810 7539.     E-mail: chj_yan@163.com
作者简介: 甘智华(1973—) ,男,教授,博导,从事液氦温区低温制冷技术的研究.ORCID:0000 0003 4112 6745.E-mail: gan_zhihua@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

甘智华, 陶轩, 刘东立, 孙潇, 闫春杰. 日本空间液氦温区低温技术的发展现状[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008 973X.2015.10.001.

GAN Zhi hua, TAO Xuan, LIU Dong li, SUN Xiao, YAN Chun jie. Development status of space cryogenic technology at liquid helium temperature in Japan. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008 973X.2015.10.001.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008 973X.2015.10.001        http://www.zjujournals.com/eng/CN/Y2015/V49/I10/1821

[1] COLLAUDIN B, RANDO N. Cryogenics in space: a review of the missions and of the technologies [J]. Cryogenics, 2000, 40(12): 797-819.
[2] 甘智华,王博,刘东立,等.空间液氦温区机械式制冷技术发展现状及趋势[J].浙江大学学报:工学版,2012,46(12): 21602177.GAN Zhi hua, WANG Bo, LIU Dong li, et al. Status and development trends of space mechanical refrigeration system at liquid helium temperature [J]. Journal of Zhejiang University: Engineering Science, 2012,46(12):2160-2177.
[3] 刘东立,吴镁,汪伟伟,等.詹姆斯·韦伯太空望远镜低温制冷系统的发展历程[J].低温工程, 2013(06): 5662.LIU Dong li, WU Mei, WANG Wei wei, et al. Development of cryogenic system for James Webb space telescope [J]. Cryogenics (In Chinese), 2013(06): 56-62.
[4] WANG B, GAN Z. A critical review of liquid helium temperature high frequency pulse tube cryocoolers for space applications [J]. Progress in Aerospace Sciences, 2013, 61: 43-70.
[5] 张楷浩,邱利民,甘智华,等.制冷机传导冷却的超导磁体冷却系统研究进展[J].浙江大学学报:工学版,2012,46(7): 12131226.ZHANG Kai hao, QIU Li min, GAN Zhi hua, et al. Advance in cryogenic system of cryocooled superconducting magnet [J]. Journal of Zhejiang University: Engineering Science, 2012,46(7): 1213-1226.
[6] RADEBAUGH R. Cryocoolers: the state of the art and recent developments [J]. Journal of Physics: Condensed Matter, 2009, 21(16): 164-219.
[7] MATSUMOTO T, MURAKAMI H. Infrared telescope in space (IRTS) mission [C]∥ Proceedings of SPIE. Denver: SPIE, 1996, 2817: 238-247.
[8] MURAKAMI H, FREUND M M, GANGA K, et al. The IRTS (infrared telescope in space) mission [J]. Publications of the Astronomical Society of Japan, 1996, 48(5): L41-L46.
[9] URBACH A, MASON P. IRAS cryogenic system flight performance report [C]∥Advances in Cryogenic Engineering. New York: AIP, 1984, 29: 651-658.
[10] MURAKAMI M, OKUDA H, MATSUMOTO T, et al. Design of cryogenic system for IRTS [J]. Cryogenics, 1989, 29(5): 553-558.
[11] INOUE H, KUNIEDA H, MITSUDA K. Japanese future space missions for high energy astrophysics astro E2 and beyond [C]∥8th Asian Pacific Regional Meeting, Volume II. Tokyo, Japan: Astronomical Society of the Japan, 2002, 1: 11-12.
[12] VOLZ S M, MITSUDA K, INOUE H, et al. The X ray spectrometer (XRS): a multi stage cryogenicinstrument for the Astro E X ray astrophysics mission [J]. Cryogenics, 1996, 36(10): 763-771.
[13] KELLEY R L, MITSUDA K, ALLEN C A, et al. The Suzaku high resolution X ray spectrometer [J]. Publications of the Astronomical Society of Japan, 2007, 59(Suppl.1): S77-S112.
[14] NARASAKI K, TSUNEMATSU S, KANAO K, et al. Development of single stage Stirling cooler for space use [C]∥ Advances in Cryogenic Engineering. Keystone, USA: AIP, 2006, 823(1): 1505-1512.
[15] MITSUDA K, BAUTZ M, INOUE H, et al. The X ray observatory Suzaku [J]. Publications of the Astronomical Society of Japan, 2007, 59(Suppl.1): S1-S7.
[16] NARASAKI K, TSUNEMATSU S, OOTSUKA K, et al. Lifetime test and heritage on orbit of coolers for space use [J]. Cryogenics, 2012, 52(4): 188-195.
[17] MURAKAMI H. Japanese infrared survey missionIRIS (ASTRO F) [C]∥ Proceedings of SPIE. Kona, USA: SPIE, 1998, 3356: 471-477.
[18] MURAKAMI H, BABA H, BARTHEL P, et al. The infrared astronomical mission AKARI [J]. Publications of the Astronomical Society of Japan, 2007, 59(Suppl.2): S369-S376.
[19] HIRABAYASHI M, NARASAKI K, TSUNEMATSU S, et al. Thermal design and its on orbit performance of the AKARI cryostat [J]. Cryogenics, 2008,48(5/6): 189-197.
[20] NARASAKI K, TSUNEMATSU S, OOTSUKA K, et al. Development of two stage Stirling cooler for ASTRO F [C]∥ Advances in Cryogenic Engineering. Anchorage, USA: AIP, 2004, 710(1): 1428-1435.
[21] TAKAO NAKAGAWA K E M H. Flight performance of the AKARI cryogenic system [J]. Publications of the Astronomical Society of Japan, 2007, 59(Suppl.2): S377-S387.
[22] INATANI J, OZEKI H, SATOH R, et al. Submillimeter limb emission sounder JEM/ SMILES aboard the space station [C]∥ Proceedings of SPIE. Sendai, Japan: SPIE, 2000, 4152: 243-254.
[23] OTSUKA K, TSUNEMATSU S, OKABAYSHI A, et al. Test results after refurbish of cryogenic system for smiles [J]. Cryogenics, 2010, 50(9): 512-515.
[24] INATANI J, NARASAKI K, TSUNEMATSU S, et al. Mechanical cooler and cryostat for submillimeter SIS mixer receiver in space [C]∥ Proceedings of SPIE. Toulouse, France: SPIE, 2001, 4540: 197-208.
[25] SATO Y, SUGITA H, KOMATSU K, et al. Development of advanced two stage stirling cryocooler for next space missions [C]∥ Cryocoolers. Long Beach, USA: ICC Press, 2009, 15: 13-21.
[26] SHINOZAK K, SUGITA H, SATO Y, et al. Developments of 1 4 K class space mechanical coolers for new generation satellite missions in JAXA [C]∥ Cryocooler. Atlanta, USA: ICC Press, 2011, 16: 1-8.
[27] NARASAKI K, TSUNEMATSU S, YAJIMA S, et al. Development of cryogenic system for smiles [C]∥ Advances in Cryogenic Engineering. Anchorage, USA: AIP, 2004, 710(1): 1785-1796.
[28] SATO Y, SHINOZAKI K, SUGITA H, et al. Development of mechanical cryocoolers for the cooling system of the Soft X ray Spectrometer onboard Astro H [J]. Cryogenics, 2012, 52(4/5/6): 158-164.
[29] NARASAKI K, TSUNEMATSU S, OOTSUKA K, et al. Development of 1 K class mechanical cooler for SPICA [J]. Cryogenics, 2004, 44(6): 375-381.
[30] SUGITA H, NAKAGAWA T, MURAKAMI H, et al. Cryogenic infrared mission “JAXA/SPICA” with advanced cryocoolers [J]. Cryogenics, 2006, 46(2): 149-157.
[31] KIRKCONNELL C S, PRICE K D. Thermodynamic optimization of multi stage cryocoolers [C]∥Cryocoolers. Cambridge: Plenum Publishers, 2002, 12: 69-78.
[32] INATANI J, NOGUCHI T, SHI S C, et al. A submillimeter SIS receiver cooled by a compact Stirling JT refrigerator [C]∥8th International Symposium on Space Terahertz Technology. Cambridge: NRAOL, 1997, 1: 273-276.
[33] MANKINS J C. Technology readiness assessments: a retrospective [J]. Acta Astronautica, 2009, 65(9): 1216-1223.
[34] SATO Y, SAWADA K, SHINOZAKI K, et al. Development status of the mechanical cryocoolers for the soft X ray spectrometer on board Astro H [J]. Cryogenics, 2014, 64: 182-188.
[35] MITSUISHI I, EZOE Y, ISHIKAWA K, et al. He flow rate measurements on the engineering model for the Astro H Soft X ray Spectrometer dewar [J]. Cryogenics, 2014, 64: 189-193.
[36] ISHIKAWA K, EZOE Y, YAMAGUCHI H, et al. Porous plug and superfluid helium film flow suppressor for the soft X ray spectrometer onboard Astro H [J]. Cryogenics, 2010, 50(9): 507-511.
[37] SATO Y, SUGITA H, MITSUDA K, et al. Development of mechanical cryocoolers for Astro H/SXS [J]. Cryogenics, 2010, 50(9): 500-506.
[38] FUJIMOTO R, MITSUDA K, YAMASAKI N, et al. Cooling system for the soft X ray spectrometer onboard Astro H [J]. Cryogenics, 2010, 50(9): 488-493.
[39] SHINOZAKI K, MITSUDA K, YAMASAKI N Y, et al. Development of double stage ADR for future space missions [J]. Cryogenics, 2010, 50(9): 597-602.
[40] NAKAGAWA T, SPICA Working Group. SPICA: a mission optimized for mid and far infrared astronomy [C]∥The Promise of the Herschel Space Observatory. Toledo, Spain: ESA SP 460, 2001, 460: 475-478.
[41] JELLEMA W, NAYLOR A, VAN LOON D, et al. A large stroke cryogenic imaging FTS system for SPICA Safari [C]∥ Proceedings of SPIE. Montreal, Canada: SPIE, 2014, 9143: A1-A10.
[42] NAKAGAWA T, HAYASHI M, KAWADA M, et al. HII/L2 mission: future Japanese infrared astronomical mission [C]∥ Proceedings of SPIE. Kona, USA: SPIE, 1998, 3356: 462-470.
[43] SHINOZAKI K, SATO Y, SAWADA K, et al. Thermal study of payload module for the next generation infrared space telescope SPICA in risk mitigation phase [J]. Cryogenics, 2014, 64: 228-234.
[44] SWINYARD B, NAKAGAWA T, MATSUHA RA H, et al. The European contribution to the SPICA mission [C]∥ Proceedings of SPIE. Marseille, France: SPIE, 2008, 7010: I1-I8.
[45] SWINYARD B, NAKAGAWA T. The space infrared telescope for cosmology and astrophysics: SPICA A joint mission between JAXA and ESA [J]. Experimental Astronomy, 2009, 23(1): 193-219.
[46] MATSUHARA H, NAKAGAWA T, KAWAKATSU Y, et al. Cooled scientific instrument assembly onboard SPICA [C]∥ Proceedings of SPIE. Amsterdam, Netherland: SPIE, 2012, 8442: U1-U11.
[47] ROELFSEMA P, GIARD M, NAJARRO F, et al. The SAFARI imaging spectrometer for the SPICA space observatory [C]∥ Proceedings of SPIE. Amsterdam, Netherland: SPIE, 2012, 8442: R1-R15.
[48] DUBAND L, DUVAL J M, LUCHIER N, et al. SPICA sub Kelvin cryogenic chains [J]. Cryogenics, 2012, 52(4): 145-151.
[49] SUGITA H, SATO Y, NAKAGAWA T, et al. Cryogenic system design of the next generation infrared space telescope SPICA [J].Cryogenics, 2010, 50(9): 566-571.
[50] SUGITA H, SATO Y, NAKAGAWA T, et al. Cryogenic system for the infrared space telescope SPICA [C]∥ Proceedings of SPIE. Marseille, France: SPIE, 2008, 7010: 1-9.
[51] GAN Z, WANG L, ZHAO S, et al. Acoustic impedance characteristics of linear compressors [J]. Journal of Zhejiang University: Science A, 2013, 14(7):494-503.
[52] 甘智华,王龙一,周文杰,等.直线臂板弹簧支撑的动圈式线性压缩机[J].工程热物理学报, 2013, 34(9): 16111614.GAN Zhi hua, WANG Long yi, ZHOU Wen jie, et al. A moving coil linear compressor with triangle flexure bearing [J]. Journal of Engineering Thermodynamics, 2013, 34(9): 1611-1614.
[53] SATO Y, SUGITA H, SHINOZAKI K, et al. Conceptual design of a cryogenic system for the next generation infrared space telescope SPICA [C]∥ Proceedings of SPIE. San Diego: SPIE, 2010, 7731: G1-G10.
[54] SUGITA H, SATO Y, NAKAGAWA T, et al. Development of mechanical cryocoolers for the Japanese IR space telescope SPICA [J]. Cryogenics, 2008,48(5): 258-266.
[55] 吴昌聚,徐秀琴.皮星1号A卫星(ZDPS 1A)被动热控制技术[J].浙江大学学报:工学版,2013(8): 14501456.WU Chang ju, XU Xiu qin. Passive thermal control technology of ZDPS 1A satellite [J]. Journal of Zhejiang University: Engineering Science, 2013(8):1450-1456.
[1] 钟英杰, 王根娟, 王明晓, 王炜豪, 邓凯. 基于卡塞格林原理的火焰自由基测量系统[J]. 浙江大学学报(工学版), 2017, 51(5): 1044-1050.
[2] 李华山, 王汉治, 王令宝, 王显龙, 卜宪标. 溶液热交换器对双吸收式热变换器性能的影响[J]. 浙江大学学报(工学版), 2017, 51(3): 471-477.
[3] 黄眺,杨卫娟,周俊虎,王智化,刘建忠,岑可法. 微型圆管中正庚烷/空气预混催化燃烧特性实验[J]. 浙江大学学报(工学版), 2016, 50(11): 2058-2063.
[4] 田付有,黄连锋,范利武,俞自涛,胡亚才. 双粒度混合烧结矿颗粒填充床压降实验[J]. 浙江大学学报(工学版), 2016, 50(11): 2077-2086.
[5] 刘宜军,鲁欢,张桂勇,宗智. 采用单元基光滑点插值法的高温管道热应力分析[J]. 浙江大学学报(工学版), 2016, 50(11): 2113-2119.
[6] 王宇飞,张良,王涛,俞自涛,胡亚才. 石墨蓄热式集热管内流动沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(11): 2087-2093.
[7] 周乃香, 张井志, 林金品, 李蔚. 毛细管内气-液Taylor流动换热特性数值模拟[J]. 浙江大学学报(工学版), 2016, 50(10): 1859-1864.
[8] 巫江虹, 薛志强, 金鹏, 李会喜. 电动汽车热泵空调微通道换热器温度分布特性[J]. 浙江大学学报(工学版), 2016, 50(8): 1537-1544.
[9] 李佳琦, 范利武, 俞自涛. 超亲水表面在淬火冷却过程中的沸腾传热特性[J]. 浙江大学学报(工学版), 2016, 50(8): 1493-1498.
[10] 李林玉, 吴张华, 余国瑶, 戴巍, 罗二仓. 直线压缩机电声转换特性的实验[J]. 浙江大学学报(工学版), 2016, 50(8): 1529-1536.
[11] 徐焕祥,俞小莉,王雷,樊之鹏,窦文博,魏巍,李道飞. 压缩空气-燃油混合动力排气能量回收利用[J]. 浙江大学学报(工学版), 2016, 50(7): 1353-1359.
[12] 夏宇,仇性启,惠媛媛. 伴有参与性介质的开口系统传热研究[J]. 浙江大学学报(工学版), 2016, 50(7): 1367-1372.
[13] 王涛, 王亮, 林贵平, 柏立战, 刘向阳, 卜雪琴, 谢广辉. TiO2纳米流体在液冷服上的应用实验研究[J]. 浙江大学学报(工学版), 2016, 50(4): 681-690.
[14] 冯钊赞, 李俊业, 李蔚. 单面加热微细窄通道内过冷沸腾的传热特性[J]. 浙江大学学报(工学版), 2016, 50(4): 671-682.
[15] 刘闵婕,朱子钦,许粲羚,范利武,陆海,俞自涛. 球形容器内复合相变材料的约束熔化传热过程[J]. 浙江大学学报(工学版), 2016, 50(3): 477-484.